Development of a New Optimal Multilevel Thresholding Using Improved Particle Swarm Optimization Algorithm for Image Segmentation
نویسندگان
چکیده
Image thresholding is a very common image processing operation, since all image processing schemes need some sort of operation of the pixels into different classes. In order to determine thresholds, most methods analyze the histogram of the image. The optimal thresholds are often found by either minimizing or maximizing an objective function with respect to the values of the thresholds. In this paper, improved particle swarm optimization (IPSO) based multilevel thresholding has been proposed for the minimization of objective function. The chaotic sequences are included in the inertia weight factor of the classical PSO to improve the searching capability of the algorithm. The experimental results show that the proposed method can make optimal thresholding applicable in case of multilevel thresholding and the performances are better than those of some property–based multilevel thresholding methods.
منابع مشابه
PSO-Based Tsallis Thresholding Selection Procedure for Image Segmentation
Multilevel thresholding is a method that is widely used in image segmentation. The thresholding problem is treated as an optimization problem with an objective function. In this article, a simple and histogram based approach is presented for multilevel thresholding in image segmentation. The proposed method combines Tsallis objective function and Particle Swarm Optimization (PSO). The PSO algor...
متن کاملA New Multilevel Thresholding Method Using Swarm Intelligence Algorithm for Image Segmentation
Thresholding is a popular image segmentation method that converts gray-level image into binary image. The selection of optimum thresholds has remained a challenge over decades. In order to determine thresholds, most methods analyze the histogram of the image. The optimal thresholds are often found by either minimizing or maximizing an objective function with respect to the values of the thresho...
متن کاملNature Inspired Metaheuristic Algorithms for Multilevel Thresholding Image Segmentation - A Survey
Segmentation is one of the essential tasks in image processing. Thresholding is one of the simplest techniques for performing image segmentation. Multilevel thresholding is a simple and effective technique. The primary objective of bi-level or multilevel thresholding for image segmentation is to determine a best thresholding value. To achieve multilevel thresholding various techniques has been ...
متن کاملMultilevel Image Thresholding Selection Using the Modified Seeker Optimization Algorithm
Multilevel thresholding is one of the most popular image segmentation techniques. This paper presents a new multilevel maximum entropy thresholding method based on modified seeker optimization (MSO) algorithm. In the proposed method the thresholding problem is treated as an optimization problem and solved by using the MSO metaheuristics. Particle swarm optimization (PSO) algorithm is also imple...
متن کاملA multilevel image thresholding segmentation algorithm based on two-dimensional K-L divergence and modified particle swarm optimization
Multilevel image segmentation is a technique that divides images into multiple homogeneous regions. In order to improve the effectiveness and efficiency of multilevel image thresholding segmentation, we propose a segmentation algorithm based on two-dimensional (2D) Kullback–Leibler(K–L) divergence and modified Particle Swarm Optimization (MPSO). This approach calculates the 2D K–L divergence be...
متن کامل